
ESTImaTE OF LIMIT LOAD OF ELASTIC-PLASTIC SHELLS OF REVOLUTION 

Yu. M. Volchkov and S. N. Korobeinikov UDC 624.074.4:539.389.2 

A number of papers [1-4] have appeared on the numerical solution of problems of deter- 
mining the axisymmetric stress-strain state of elastic-plastic shells of revolution. The 
solution requires the evaluation of integrals of the stress over the thickness of the shell, 
which increases the amount of processing and storage of information on the stress-strain 
state as compared with the elastic solution. 

Approximate relations were derived in [5, 6] for the elastic-plastic flow of shells under 
the Mises yield condition based on the approximation of a finite ratio between forces and 
moments. By using these relations the volume of information required for storage in the 
computer memory is appreciably reduced, since it is no longer necessary to evaluate inte- 
grals over the thickness of the shell. In [7, 8] the approximate yield surface derived in 
[5, 6] was used to determine the limit loads of shells under tensile stress. Good agreement 
was noted between the limit loads found by using the approximate and Mises yield surfaces~ 

Our numerical experiments showed that the limit loads of shells of revolution under axi- 
symmetric loading by an external hydrostatic pressure can be determined accurately enough for 
practical purposes by using the approximate equations derived in [5, 6] which relate directly 
the rate of change of forces and moments with the strain rates and the changes of the curva- 
ture of the middle surface of the shell. 

i. Controlling Relations of the Elastic-Plastic Axisymmetric Deformation of Shells. For 
an ideally elastic-plastic material in an axisymmetric plane stressed state the controlling 
relations connecting the stress rates o i and the strain rates ~i (a dot over a quantity denotes 
differentiation with respect to a certain strain parameter) have the form 

~,=yA~je:, Ai,=1--c]~/P, A,j--v--cfifjP (i~=]), 

{ i~ if J" = 1/3 and ~ ~ 0, 
C= 

O, if Y<t/3 or $ :  t/3 and ~ 0 ,  (1.1)  

I r r 

11 = ~1 + yo2, ~1 = (2(h - -  ~ ) I 3  (t ~ 2), 

where E is Young's modulus, ~ is Poisson's ratio, the o i are the stress components relative 
to the yield point under uniaxial tension (compression) OT; from now on, unless specially 
stipulated, the subscripts take on the values 1 and 2, and summation is performed over re- 
peated indices. 

By using the Kirchhoff--Love kinematic hypotheses, the strain rates in the shell are ex- 
pressed by the formulas 

e~ = 8i + 2~ki, (1.2) 

where e i and ki are, respectively, the strains and the changes of curvature of the middle 
surface (k i and Kih/4 , and the K i are the corresponding dimensional quantities); ~ = 2z/h; z 
is the distance along the normal from the middle surface of the shell, --h/2~z~h/2; h is 
the thickness of the shell. 

The forces n i and moments m i (n i = Ni/~Th, m i = 4Mi/(OTh2), where N i and M i are the 
dimensional forces and moments) in the middle surface of the shell are calculated from the 
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formulas 

1 1 

! i i o~d~, m i =  o ~ d ~ .  ft{ = - - ~  

--1 - - i  

(1.3) 

The relation between the rates of change of forces and moments and the strain rates in 
the middle surface of the shell can be written in the form 

(1.4) 

where the superscript T denotes transposition. 

I t  f o l l o w s  from Eqs.  ( 1 . 1 ) - ( 1 . 3 )  t h a t  t he  e l e m e n t s  of  t he  symmet r i c  m a t r i x  [Bi j  ] a r e  
g i v e n  by t h e  e x p r e s s i o n s  

1 

Bi+2~j+~l = 2@+~-1)Y S A{i~(~+~)d{ (i, ] = l, 2; k, I = O, i). (1o5) 
--1 

The equations derived by Ivanov in [6] directly connect the rates of change of forces 
and moments with the strain rates of the middle surface of the shell. In the derivation of 
these equations it was assumed that an element of the shell is either completely in a plastic 
state or completely in an elastic state, from which it follows that in this case there is a 
finite ratio between the forces and moments. In [5] Ivanov proposed an approximation of 
this ratio which he used in [6] to construct equations connecting directly the rates of 
change of forces and moments with the strain rates of the middle surface of the shell. For 
the asisymmetric deformation of a shell these equations can be written in the form (i,4)~ 
where 

BI3 = - -  4-!" ~ =  - - T - "  B14 = - -  -7" ~ " - 7 - - '  B22 = ~ ~ - -  ~ --3-- ' 3 
4 0172 

B~3 = - -  - 5 -  ? ~  - S  " 

4 0~7~ 4 { 4 0~ ~ (1.6) 
B~ = -- -U ?= -T-, B~ =--s  ~ \ I - - ~ - T W -  ],  

Bag=_.8_ Y4(w_0~._~_ S ]' B44=~-,  ~ t--0~-~---~-), 
\ 

t, if I----'1 and ~ > 0 ,  

0, if / < t  or / =  t and Q ~ 0 .  

_ + -g -  Oik~, "h = a l  + va2, 01 = 131 + ~,13~ ( i  ~ 2) ,  

4 of o/ S = 7~a~ + T Oi~, 
a ,  = o-g ' = 0m--7' 

/ = Q- + -2-- - + o.4sQ,  + T ] / -Q'-  + 

Q,~ = n~ - np~ 2 -6 n~, Q.~ = m ~ -  rn~m 2 %- rn~, 
l 

Qnm = npn l  - -  T (npn2 ~- n2ml) + n2rn2. 

2. Formulation of the Problem and Method of Solution. The formulation and method of 
numerical solution of the problem of the elastic-plastic axisym~etric deformation of shells 
of revolution are described in [4]. 

We take the Sanders geometrical nonlinear equations of shells with small deformations 
and moderate deflections as a basis. For shells of revolution under axisymmetric deformation 
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the fundamental system of equations is reduced to a set of six ordinary nonlinear first order 
differential equations for the required rates of change of displacements and forces in the 
middle surface of the shell. Three boundary conditions are set on each end of the shell. 

In the numerical solution the derivatives with respect to the meridional coordinate are 
approximated by second order central differences. For constant coefficients the difference 
equations form a system of linear algebraic equations which is solved by the matrix pivotal 
method. 

This is a Cauchy problem with respect to the deformation parameter. The second order 
predictor-corrector method [2] is used in integrating with respect to the deformation param- 
eter. Because of the geometrical and physical nonlinearities, iterationwas performed with 
respect to the deformation parameter at each step. 

The axial displacement of the end of the shell was taken as the deformation parameter. 
The limit load is defined as the maximum on the graph of the external force as a function of 
the axial displacement. 

3. Numerical Results. Using the algorithm described in Sec. 2, limit loads were calcu- 
lated for a shell consisting of cylindrical and conical parts acted upon by an external hydro- 
static pressure (Fig. i). The calculations were performed for a shell with the following 
parameters: R/h = i00, Lcy/Lco = i, L/R = 0.2, E/o T = 250, ~ = 0.3; the angle 0 was varied 
from 90 to 130 ~ Here R is the radius of the middle surface of the cylindrical part of the 
shell, Lcy and Lco are respectively the lengths of meridians of the cylindrical and conical 
portions; L = Lcy +Lco is the total length of a meridian of the middle surface of the shell; 
8 is the angle between the axis of revolution and the normal to the middle surface of the 
conical part of the shell. 

We present the results of calculations for the following boundary conditions: 

n l  = b 2 B p / 2 h ,  w = q J  = 0 f o r  s = O ,  

u ---- w -.~ (~) -~- O f o r  s = L ,  

(3.1) 

(3.2) 

where w = W/h, u = U/L, W is the displacement along the normal to the middle surface of the 
shell, U is the displacement along a meridian, ~ is the angle of rotation of the normal to 
the middle surface of the shell, s is the arc length along a meridian (0~s~L), p = P/(b 2 
OT) , P is the hydrostatic pressure, and b = h/L. 

Boundary conditions (3.1) and (3.2) correspond to the fact that the left-hand end of the 
shell is displaced in the axial direction under an axial force nl, and the right-hand end is 
clamped. With respect to the angle of rotation of the normal and the displacement in the 
direction of the normal to the middle surface, the boundary conditions correspond to both 

ends being clamped~ 

6 __e 

i 

4 �84 

2 
o f 

�9 2 ] 
0 - -  

90 "i00 "PIO '120 8 ~ 

Fig. 1 

P 

o ~ 

~ - o l p ( -  --- ~ . . . . . . . . . .  ! . . . . .  
" 9 5 ~ 3 - ~  " o ! 0 -  

7 /  ' { ,-2 
�9 / , ; - - 4  x - s 

' o i 

l--J/f ' l  
I .UI//I  
L ~ 1  / ~ ~2s- _ _ _ ,  

_1__ 
0 4 8 lOSUo 

Fig. 2 

572 



R = 2,087 

,fo = 5,159 

L 

3,522 

5,877 

L 
5, 905 

Fig. 3 

In approximating the differential equations by finite differences, the cylindrical and 
conical parts of the shell are divided into 16 intervals each. Preliminary calculations show 
that if the step in the deformation parameter is chosen so that ~I0 steps are taken before 
plastic deformations occur, and ~30 steps up to the limit load; a further decrease of the 
step size leaves the limit load practically unchanged. 

The matrix elements [Bij ] in Eq. (1.4) are calculated by both Eqs. (1.5) and Eqs. (i.6)~ 
In using Eqs. (1.5) the integrals are evaluated by Simpson's rule with the thickness of the 
shell divided into eight intervals. 

Figure 1 shows the dependence of the limit load on the angle 9 (points 1 are calculated 
by Eqso (1.5) and points 2 by Eqs. (1.6)]. The graphs show that Eqs. (1.6) give higher values 
of the limit loads, but the maximum difference in the results does not exceed 6%. 

Figure 2 shows the p ~ uo curves (Uo is the dimensionless axial displacement of the left- 
hand end of the shell) calculated by Eqs. (1.5)(solid curves) and by Eqs. (1.6) (open curves)~ 
points 1 and 2 are the limit loads; 3 and 4 are the values of the pressures at which zones of 
plastic deformation first appear according to Eqso (1.5) and (1.6) respectively. 

According to the hypotheses under which Eqs. (1.6) were derived, a cross section of a 
shell is either completely in a plastic state or completely in an elastic state. The extent 
of zones of plastic deformations according to Eqs. (1o5) and (1.6) were compared for shells 
with various angles O. Figure 3 shows the nature of the development of zones of plastic de- 
formation for a shell with e = ii0 ~ The diagrams on the left-hand side of the figure were 
calculated with Eqso (1.5), and those on the right-hand side by Eqs. (1.6). The calculations 
show that Eqs. (1.6) correctly reflect the nature of the localization of zones of plastic 
deformations~ 

Thus, comparison shows that limit loads and the dependence of the pressure on a charac- 
teristic displacement can be calculated accurately enough by Eqso (1.6). By using relations 
of the form (:1.6) the numerical solution of nonaxially symmetric problems of the elastic- 
plastic deformation of shells can be greatly facilitated. 
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STABILITY OF STRUCTURE ELEMENTS SUBJECTED TO STATIONARY LOADS 

V. D. Potapov UDC 624o074+539.376:678.5.06 

The problem of the stability of viscoelastic rods and shells subjected to compressive 
loads varying randomly with time was examined in [I]. The method of moment functions is used 
for the solution. The problem mentioned is among the class of stochastically nonlinear 
problems; hence, the system of equations in the desired moment functions turns out not to be 
closed [2-4]. Closure of the system of equations is realized by using the hypothesis that 
the process being studied is quasi-Gaussian, whereupon an approximate solution is obtained. 
A feature in the construction of such a solution makes estimation of the degree of its error 
quite problematical in the general case. From this viewpoint, an analysis of the exact so- 
lutions of the problems mentioned is of indubitable interest since its illustration can re- 
sult in a comparison between the outcomes obtained by approximate and exact methods. 

This paper is devoted to an examination of the exact method of solving problems on the 
stability of structure elements subjected to random loads. 

We assume that a viscoelastic rod loaded by stationary transverse loads and a compressive 
force applied to the ends is at rest on a continuous viscoelastic foundation. The equilibri- 
um equation for such a rod in the quasistatic formulation of the problem is 

w = - - ( c  + K)  [(t - -  r )EIw  ~v + P(w + Wo)" --  ql, (1)  

where 

t t 

r f  = r ( t  - f = ~ K (t  - -  x) (x) d'~; 
t o t o 

and w, Wo are the additional and initial rod deflections. The remaining notation is standard. 

The relaxation F(t -- T) and creep K(t -- T) kernels characterize the viscous properties 
of the material of the rod and of the viscoelastic foundation. 

Considering the rod hinge-supported at the ends and assuming 

k~ 
Wo (x) = f0 sin -7- -  x, 

k ~  k ~  
w (x, t) = ] (t) s i n - 7 -  x, q (x, t) = qO (t) sin - 7 -  x,  
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